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Introduction 
�  Future HEP software for HPC/HTC  

�  hardware landscape is rapidly changing for power 
efficiency (advent of  the many core era) 

�  parallelism is no longer optional, but it must be 
explored thoroughly and present many challenges  

�  maximize instruction throughput and data locality 

�  Our vision for HEP/HPC detector simulation 
�  to have a massively parallelized particle (track level) 

transportation engine 
�  comply with different architectures (GPU, MIC and etc.)   
�  demonstrate a highly parallelized realistic HEP 

detector simulation on a hybrid computing platform  
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Concurrent Computing Model 
�  Host (CPU) + Coprocessors (GPU, MIC) 
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Phi Cluster on Wilson 
�  6 Intel Xeon E2620 

�  12 cores @ 2GHz 
�  32 GB each phix and gpux 

�  4x4 Intel Xeon Phi 5110P 
�  60 cores @ 1.053 GHz 
�  8GB 

�  2 Nvidia K20 Kepler GPU 
�  2496 cores @ 0.7 GHz 
�  5GB 

�  Geant4R&D on cluck  
�  AMD Opertron (12 cores)  
�  Fermi M2090 (512 cores) 
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Detector Simulation in Coprocessor  
�  GPU (CUDA) applications 

�  require maximum SIMT in 
conjunction with TLP 

�  a good example of  hybrid HPC       

�  many opportunities for 
challenging development in 
algorithms and efficient 
memory managements  

�  MIC for parallel computing 
�  generic C/C++     

�  OpenMP/TBB/CilkPlus/OpenCL 

�  Vectorization/SIMD 

�  load balancing/work stealing 

12/05/2013 PDS Meeting 5 



Goal and Key Components 
�  Develop a massively parallelized EM particle 

transportation engine for many-core architects 

�  Geometry, physics, transportation, task management 
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Track Level Parallelism and Split Kernel 
�  Stepping: simple map or expand (survivor/secondary) 

�  GPIL+sorting+DoIt: split and repartition (by physics 
process, particle type, geometry and etc.) 
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Status 
�  GPU prototype was implemented with CUDA 

compatible device codes 
�  key components, pRNG, sorting, memory management  

�  evaluate performances for a simple CMS ECAL and a 
magnetic field map as well as sub-components of  codes 

�  GPU device codes are fully ported to MIC platform 
�  tested with simple OpenMP, TBB, CilkPlus applications 

�  test more examples and understand performance    

�  Integrate the prototype with the vector prototype 
�  coprocessor broker (by Philippe)  
�  optimize the device codes (top-down approach) 
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GPU Performance 
�  Hardware (host + device) 

 

�  Performance measurement  
�  (4096x32) tracks 
�  Gain = Time(1 CPU core)/Time(total GPU cores) 

Time=(data transfer + kernel execution) 
�  default <<< Block, Thread >>> organization       

M2090<<<32,128>>> and K20<<<26,192>>>  
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Host (CPU) Device (GPU) 

M2090 AMD Opertron™ 6134 
32 cores @ 2.4 GHz 

Nvidia M2090 (Fermi) 
512 cores @ 1.3 GHz  

K20 Intel® Xeon® E5-2620  
24 cores @ 2.0 GHz 

Nvidia K20 (Kepler) 
2496 cores @ 0.7GHz 



Performance - Transportation 
�  Decompose transportation by the particle type  

�  separate kernels is ~30% faster for γ:e- = 0.2:0.8 mixture 

�  Performance of  numerical algorithms for the equation 
of  motion of  a charged particle in a magnetic field 

 

GPU Type Algorithm CPU[ms] GPU[ms] Kernel[ms] CPU/GPU CPU/Kernel 

Classical RK4 106.9 9.7 2.6 10.9 41.0 

M2090 RK-Felhberg 119.3 9.9 2.8 12.0 42.3 

Nystrom RK4 39.4 7.9 0.8 5.0 51.8 

Classical RK4 78.6 4.5 1.7 17.5 47.4 

K20 RK Felhberg 87.9 4.4 1.6 19.8 55.2 

Nystrom RK4 30.9 3.5 0.7 8.6 46.9 
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Geometry 

�  A set of  geometry classes to support EM physics and 
the particle transportation 
�  material (element, material and Sandia table) 

�  solids (box, tubs and etc.) and logical/physical vol. 
�  Navigator, multilevel locator 

�  A simple, but realistic detector is constructed on CPU 
and  re-mapped on GPU global memory 

�  Create a navigator per thread on GPU and reuse it 
(locating the global position is expensive) 
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EM Physics 
�  Processes and models implemented 

�  Use look-up tables for lambda and other parameters 
for energy loss and sampling 

�  Secondary particles are stored atomically on GPU, 
and may be transported to CPU or rescheduled for 
the next tracking cycle on GPU 
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Global Memory 
�  EM physics processes and models require frequent data 

access from/to global memory 
�  input: material information, physics tables 
�  output: secondary particles (N=0,1,2 per step) and hits 

�  Memory transaction (atomic add) for 100K secondaries 

 

 

�  Strategies for secondary particles, hits and etc. 
�  any dynamic memory allocation is very expensive  
�  use pre-allocated memory (a fixed size stack on GPU)   

NVIDIA M2090 <<<32,128>>> GPU [ms]  CPU [ms] 

Pre-allocated fixed memory 1.5 39.5 

Dynamic allocation per thread 49.8 59.1 

Dynamic allocation per block 79.0 59.0 
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Data Structure 
�  Coalesced global memory access 

�  align memory address for efficient data access 

�  Array of  Struct (AoS) vs. Struct of  Array (SoA) 
�  a simple test of  loading data (4-doubles, 8-doubles) and 

writing back to the global memory (65K accesses)  

�  CPU: really depends in the size of  data and architecture 
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Floating-point Consideration 
�  Cost for double-precision 

�  memory throughput (x2) 

�   possible registers spilling 

�  cycles for arithmetic instructions 
(x2/x3 in M2090/K20) 

�  performance in classical RK4:            
float/double = 2.24 (M2090) 

�  not negotiable for precision and 
accuracy 

�  Possibilities for single-precision 
�  input physics tables 

�  B-field map (texture) 

�  local coordination 
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Random Number Generators 
�  SIMD random number engine in each thread 

�  CUDA pRNG library (CURAND) 
�  xor-family (XORWOW) 

�  L’Ecuyer’s multiple recursive generator (MRG32k3a) 
�  Mersenne Twister (MTGP32, 32bit, period 2^11213) 

�  Performance: (64 blocks x 256 threads) 
�  two kernels (initialize states, generation) for efficiency 

 

CURAND pRNG Init States [ms] 10K RNG [ms] 

XORWOW 4.12 7.92 

MRG32k3a 5.02 21.88 

MTG32 0.69 31.94 
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Performance: Realistic Simulation  

�  A simple calorimeter (a.k.a CMS Ecal) 

�  Tracking for 1-step: split kernels (GPIL+sorting+DoIt) 

 

    ()* GPU time using one kernel (sequential stepping) 

�  Optimization strategies 
�  kernel basis (high-level restructuring) 
�  component basis (low-level improvement by profilers) 

CPU [ms] GPU [ms] CPU/GPU 

AMD+M2090 748 37.8 (62.6)* 19.8 (11.9)* 

Intel®+K20M 571 30.4 (81.9)* 18.7 (7.0)* 
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Xeon Phi Performance 
�  Compilation modes 

�  offload (heterogeneous for both host and coprocessor)  

�  native (coprocessor = standalone multicore computer) 
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Xeon Phi Performance 

�  Offload mode for different numerical algorithms 
�  one step with the CMS magnetic field map 

�  explicit memory copy model 
�  parallel loop (map) with OpenMP (omp parallel), 

TBB(parallel_for), CilkPlus (cilk_for) 

�  Performance measurement  
�  100,000 (random) tracks 
�  Gain = Time(1 CPU core)/Time(total MIC threads) 

Time=(data transfer + parallel execution) 

�  number of  threads = 4 x (N_phicores -1) = 236 
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Performance Results 
�  OpenMP 

�  TBB 
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Algorithm CPU[ms] MIC [ms] CPU/MIC First Event 

Classical RK4 97.0 29.4 3.3 0.46 

Jameson RK4 99.8 30.0 3.3 0.56 

RK Felhberg 104.9 29.9 3.5 0.46 

NystromRK4 49.0 23.7 2.1 0.17 

Algorithm CPU[ms] MIC [ms] CPU/MIC First Event 

Classical RK4 98.6 40.1 2.5 0.035 

Jameson RK4 100.4 40.3 2.6 0.036 

RK Felhberg 109.2 38.1 2.9 0.040 

NystromRK4 50.6 29.0 1.8 0.015 



Performance Results 
�  CilkPlus 

�  Summary 
�  all programing models show similar performance results 
�  current device codes may be poorly optimized for MIC 
�  instruction are not vectorized 

�  memory accesses are not aligned 
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Algorithm CPU[ms] MIC [ms] CPU/MIC First Event 

Classical RK4 101.2 55.5 2.0 0.57 

Jameson RK4 109.4 54.2 2.2 0.61 

RK Felhberg 106.4 51.4 2.3 0.61 

NystromRK4 49.4 49.1 1.1 0.22 



GPU Connector to an External Scheduler 

�  Vector Prototype (presentation by Federico) can serve 
as the track buckets provider to the GPU prototype 

�  GPU connector is an interface to the Vector Prototype 

�  Challenges 
�  different geometry implementation – need to translate 

location and history information back and forth 
�  difference in data layout 

�  only a subset of  particle can be handled 
�  (ideal) bucket size very different from CPU 

�  try to maximize kernel coherence 
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GPU Connector to the Vector Prototype 

�  Implementation 
�  send back to CPU particles not handled 

�  stage particles in a set of  buckets 
�  list and type of  bucket is customizable, one idea is to 

buckets based on particle/energy that have a common 
(sub)set of  likely to apply physics. 

�  within this baskets the particles are placed in order/group 
given by the VP 

�  delay the start of  a kernel/task until it has enough data 
or has not received any new data in a while 

�  to maximize overlap uploads are started for a task after 
handling a CPU basket 
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Near-term Plan 
�  Continue integration with the vector prototype  

�  demonstrate a working example with the connector  

�  share components (geometry, physics, transport and       
data structure)   

�  Redesign the prototype optimally for SIMT/SIMD 
�  minimize branches (granulize tasks) 

�  maximize locality (instruction and memory)  
�  efficient data structure, algorithms and kernel managers     

for leveraging parallelism/vectorization 

�  Explore hybrid models with CPU/Coprocessors  
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MIC Programming Models 
�  Intel programing model 

�  TBB: C++ template library 

�  CilkPlus: C++ language extension 
�  choice of  high performance parallel programming models 
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